
1 General description of the projects

The term projects are aimed at providing a test ground for the skills and
knowledge you picked up during the course and optionally give you a chance
to join ongoing network research. You are expected to give a 5-8 minute
long presentation of your project with a few slides on the last lesson of the
course.

There are two type of projects you can choose from: simple projects and
research projects. The simple projects in most cases correspond to numerical
studies of one of the problems discussed during the course. To fulfill a simple
project you have to go through basically the following steps:

• understand the problem posed, (i.e., dig up the slides from the course
related to the problem, look up in Wikipedia, etc.),

• write/download the program(s) needed to carry out the project,

• calibrate and run your programs: in some cases parameters have to be
tuned, in other cases the same routine has to be re-run several times
with different parameters, etc.

• prepare figures showing the results,

• prepare your slides for the presentation. In your presentation you
should

– explain the problem to the others,

– outline how you solved it,

– show the results.

The research projects are more complex, need much more work (along
with frequent consultations with the project leader), and are not expected
to be finished by the end of the course. (However, a significant progress
should be still achieved). A student choosing a research project could con-
tinue working on the problem in contact with the project leader even after
finishing the AIT course, and in the ideal situation the outcome of such a
collaboration is a research publication in a peer reviewed scientific journal.
The presentation of a research project in the AIT course should explain
the problem posed, detail the progress made, and describe the future plans
related to the project.

1



2 The problems

2.1 Simple projects

1. Write a program that can randomize a network,

• by preserving only the number of nodes and links,

• or by preserving the degree sequence of the nodes,

• or by preserving the degree sequence and turning the network to
assortative or dissasortative depending on the choice of the user.

Demonstrate how the program works on the network examples used in
the practical sessions: show a few figures of the networks before and
after the randomization, and show a figures of the changing of some
network parameters during the randomization.

(Project leader: Gergely Palla)

2. Write a program that can randomize a network by preserving the de-
gree sequence and enhancing or decreasing the frequency of a chosen
motif consisting of 3 nodes. (The user should be able to change the
motif and to decide whether its frequency should be increased or de-
creased).

Demonstrate how the program works on the network examples used in
the practically sessions: show a few figures of the networks before and
after the randomization, and show a figures of the changing of some
network parameters during the randomization.

(Project leader: Gergely Palla)

3. Compare random graphs generated with the Holme-Kim model and
with the configuration model. Set the number of nodes and links to
be the same, and also the degree distribution to be the same. Is there
any difference between the behavior of the clustering coefficient, the
behavior of the average nearest neighbors degree, and the closeness?

In the presentation show pictures of the networks generated by the
two different algorithm, and also present figures showing the examined
statistics (e.g., the clustering coefficient as a function of degree, the
knn as a function of degree, etc.).

(Project leader: Gergely Palla)

2



4. Write a program that can extract the triad motif significance profile
of an input network. Compare the motif profile of the networks used
in the practical session.

In the presentation (beside the motif significance profiles) show how
the frequency of a given motif is changing when randomizing the net-
work, and also snapshots of the networks before and after the random-
ization.

(Project leader: Gergely Palla)

5. Study the percolation transition of the E-R graph numerically. How
does the size of the largest connected component scale with the system
size at the critical point? How does the size of the largest connected
component grow with p at the critical point?

In the presentation show pictures of the generated graphs both below
and above the critical point, and also figures revealing the scaling of
the largest connected component at pc.

(Project leader: Gergely Palla)

6. Study the average shortest path length in the W-S model numerically.
If p is kept fixed and N is varied, how does the critical Nc (where
the small world effect takes place) scale with p? Reproduce the data
collapse for 〈l〉 discussed in the course.

Include pictures of the generated graphs both below and above the
critical point in the presentation, and show figures depicting the scaling
and the data collapse.

(Project leader: Gergely Palla)

7. Calculate the distribution of the node visiting frequency of a random
walker on a graph! Use some real network examples from the course
and use some randomly generated networks! Try to compare the re-
sults with the topological properties of the graph (degree, clustering,
betweenness, motif and communities)!

(Project leader: Péter Pollner)

8. Compare the networks used in the practical sessions according to the
resilience against random breakdown and attack! Analyze the problem
of resilience on the corresponding random graphs as well. Use an
ensemble of ER graphs and the randomly rewired graphs.

(Project leader: Péter Pollner)

3



9. Implement the Girvan-Newman algorithm and test it on the “classical”
computer generated test bed and on the networks used in the practical
sessions.

Details:

• The computer generated test bed is defined as follows: consider
4 groups of nodes with 32 members each, these correspond to
the communities the algorithms should find. The links are drawn
between the nodes at random, however the average number of
links going from one node to other nodes in its own community
is given by zin, whereas the average number of links going to the
rest of the network is given by zout, and zin and zout always add
up to zin + zout = 〈k〉 = 16. When zout is small and zin is close
to 16, the algorithms have an easy job, the communities can be
spotted even by eye, since they the links are very dense inside and
occur very rarely in between the communities. However, as zout
is increased the communities become less and less well defined,
and around zout = 8 the graph becomes homogeneous.

• The evaluation of the community finding results is based on a
matching between the predefined 4 groups and the found com-
munities. Choose the matching which gives the highest number
of correctly classified nodes. (E.g., index the original groups by
A,B,C,D, then index the found communities also with A,B,C,D,
and search for the permutation of these indices maximizing the
number of nodes on which the two community index is the same).

• In the presentation plot the ratio of correctly classified nodes over
the total number of nodes as a function of zout. Also show figures
about the found communities in the test graph and in the real
networks.

(Project leader: Gergely Palla)

10. Implement a greedy optimization of the modularity Q and test it on
the “classical” computer generated test bed and on the networks used
in the practical sessions.

The outline of the greedy optimization is the following:

• In the initial state each node is considered to be in a separate
community.

4



• At each step merge a pair of communities into a single community.
Select the pair for which the increase in Q resulting from the
merging is maximal.

• Carry on until the network contains only a single community.
Choose the partition with highest Q value in the process.

The further details are the same as in the previous problem.

(Project leader: Gergely Palla)

11. Treat directed, weighted networks as pipelines, where fluid can flow
from one node to the other. The fluid moves on the links only into
the direction of the link, and the amount of the flow on a link is
proportional to the link-weight.

Demonstrate this dynamics on some small example networks! Start
from some initial density distribution of the amount of the fluid on
the nodes, and show how this distribution is changing over time. Find
the characteristic time scales of the dynamics and examine how the
distribution approaches its infinite time limit!

Note: use only strongly connected networks for the demonstration,
and discuss shortly what do you expect if there are weakly connected
parts as well.

For the dynamics you assume the following:

• The dynamics is discrete in time.

• At each time step:

– The fluid at each nodes is in an ”outgoing container”.

– The full amount of the fluid leaves the ”outgoing container”
and arrives in the empty ”incoming containers” of the neigh-
bors.

– Then the fluid flows from the incoming container to the
empty outgoing container.

(Project leader: Péter Pollner)

5



2.2 Research projects

2.2.1 Project options for AIT students in the LINK-Group (www.linkgroup.hu)

The LINK-Group offers the following projects for AIT students:

• comparative analysis of the overlapping network modules of the real
world networks using our in-house developed modularization method
(www.linkgroup.hu/modules.php)

• analysis of the cooperation of complex, real world networks using the
model of spatial games (where social dilemma games, such as the Pris-
oners Dilemma game are played by agents, who are neighbors in a real
world network) and the NetworGame program recently developed by
the LINK-Group (http://www.linkgroup.hu/NetworGame.php)

• analysis of signal propagation of complex, real world networks using
the Turbine perturbation analysis program recently developed by the
LINK-Group (http://www.linkgroup.hu/Turbine.php)

The real world networks examined are the following:

• analysis of the recently described onion-type networks
(http://www.pnas.org/content/108/10/3838.full.pdf)

• analysis of crisis events on large-scale social networks
(http://www.plosone.org/article/info:doi%2F10.1371%2Fjournal.pone.0017680)

• comparative analysis of the non-stressed and stressed yeast protein-
protein interaction network (see original paper here:
http://www.linkgroup.hu/docs/11PLoS-Comput-Biol.pdf), or the
protein-protein interaction network from young and old organisms

• comparative analysis of free and substrate-bound (drug-bound) pro-
tein structure networks, and allosteric drug effects on combined pro-
tein structure networks of protein complexes (see the concept here:
http://www.linkgroup.hu/docs/11TIPS.pdf).

The student working on the project should

• read the most important papers related to the project obtained from
Prof. Csermely

• get acquainted with the network data and computer programs serving
the purpose

6



• be able to modify the data and programs if necessary

• analyze the network by the programs, understand the results and pro-
pose the next step of investigation

• make a report on her/his work and findings.

Interested students should approach Prof. Peter Csermely at the email:
csermely@eok.sote.hu. If the student stays interested after the completion
of the project report, the project may continue to a distance-collaboration
and may lead to a scientific publication. (We published several papers with
colleagues from China and Singapore we have never met ever personally.)

2.2.2 Project options for AIT students at the Eötvös University

1. The PUBMED (www.pubmed.org) is a free archive for several bio-
related publications. Download a set of articles (please take into ac-
count the download policy of PUBMED, and do not overload their
server!), and create a co-authorship network. Find communities in
the co-authorship network with several community finding algorithms!
Try to identify the most representative author/publication in each
community by calculating centrality measures! Verify your findings by
general scientometric measures, e.g. using the Google scholar archive!
By using keywords from the publications, try to identify the topics of
the communities!

2. There are a huge amount of free, open source computer programs.
Some of them are really badly written, and some of them are really
excellent examples for “good programming practices”. Choose one
“bad” and one “good” software, and analyze the call graph of the
functions, routines etc, that build up the software! Compare the graph
structure of the call graphs of the chosen programs by comparing usual
network measures! Collect some programming practice guide lines,
available at the Internet. Compare the network measures of softwares,
that do follow these guidelines with such softwares, that do not follow
them!

3. The Flickr (www.flickr.com) is publicly available photo-archive site,
where users can upload photos. Each photo can be labeled by the
owners and by any other user as well. Download a set of public photos
and their labels. Create a topic map from the co-occurrence of the
labels! Try to find “well tagged” and “not well tagged” photos by

7



measuring similarity between the co-occurring labels. The similarity
can be measured e.g. by the length of the shortest path between the
two labeling words on an word-encyclopedic network (e.g. Wordnet,
wordnet.princeton.edu)

For more details contact Péter Pollner or Gergely Palla.

8


