Part I – 50 minutes

1. Build a $SHIQ$ TBox, representing the statements below. You can only use the concept names shown in grotesque font, and the role names $hasChild$ and $hasFriend$.

A Person is Lucky if she or he has a Happy grandparent and has at least two Clever children. We know that a Lucky Person either has no friends or all her/his parents are not Happy. We also know that no one can be both Clever and Lucky.

2. Consider the SH TBox $T = \{O ⊑ ∃hC - O, ∃hF - O ⊑ B, hC - ∅ ⊑ hF\}$ and the reasoning task of deciding the satisfiability of concept B wrt. T.

Write down the concept C' and the TBox T' obtained by the internalisation of this reasoning task, i.e. reduce this task to deciding the satisfiability of concept C' wrt. TBox T', where T' contains role axioms only.

3. Transform the following concept C_0 into an equivalent concept C_1 in NNF:

$$C_0 = \neg((\geq 1 R) \land \forall R. (\neg B \sqcup \exists R. \neg B) \land \exists R.(\leq 5 R) \land (\geq 2 R.B)).$$

Part II – 30 minutes

5. Consider the following tableau state T, which was obtained in the process of deciding the satisfiability of the concept $C_0 = \exists hC.\exists hC.O \land \exists hC.\exists hC.B \land (\geq 2 hC) \land \forall hC.(\leq 1 hC) \land ((\exists hC.(\geq 2 hC)) \sqcup (\leq 1 hC))$:

$$b \cdot \{C_0, \exists hC.\exists hC.O, \exists hC.\exists hC.B, (\geq 2 hC), \forall hC.(\leq 1 hC), (\exists hC.(\geq 2 hC)) \sqcup (\leq 1 hC)\}$$

Which transformation rules of the $ALCN$ tableau algorithm for empty TBoxes are applicable in tableau T? For each applicable rule

• give the node(s) and the concept it applies to;
• construct its output, the set of tableau states S_T;
• check if any of the new states contains a clash.

(Note that you only have to deal with tableau states reachable from T by a single rule application.)

When drawing tableau states, you don’t have to copy the unchanged node and edge labels. You can refer to a list of concepts in a node label of T by . . . , i.e. when a rule extends a node label by a concept D you can use the node label $\{\ldots, D\}$.