Big-Oh notation

1. Decide in all possible cases whether \(f_i(n) = O(f_j(n)) \) is true or not if

\[
\begin{align*}
 f_1(n) &= 11n^2, \\
 f_2(n) &= 8n^2 \log n, \\
 f_3(n) &= n^2 + 100000.
\end{align*}
\]

2. (a) Let’s suppose that \(f(n) = O(n^2) \) and \(g(n) = \Theta(n^3) \). Is it true that \(f(n) = O(g(n)) \)?
 (b) Let’s suppose that \(f(n) = O(n^3) \) and \(g(n) = \Theta(n^2) \). Is it true that \(g(n) = O(f(n)) \)?
 (c) Let’s suppose that \(f(n) = O(n^3) \) and \(g(n) = O(n^2) \). Is it true that \(g(n) = O(f(n)) \)? Is it possible that \(f(n) = O(g(n)) \)?

3. Let’s suppose that \(f(n) \) and \(g(n) \) are functions with non-negative values. Prove that

\[
\max(f(n), g(n)) = \Theta(f(n) + g(n))
\]

4. Give a linear algorithm (ie. whose running time is \(O(n) \)) using only comparisons to find the maximum among \(n \) different numbers. What is the precise number of comparisons we have to perform to find the maximum?